Improved Lower Bounds on Multicolor Diagonal Ramsey Numbers

> S. Venkitesh IIT Bombay

April 23, 2021 E-Seminar on Graphs and Matrices

Ramsey numbers

Ramsey number $r(t_1, t_2, \ldots, t_\ell; \ell)$

The least $n \in \mathbb{Z}^+$ such that every ℓ -(edge) labeling of K_n contains a monochromatic K_{t_i} , for some $i \in [\ell]$.

Diagonal Ramsey number $r(t; \ell)$ $(t_1 = \cdots = t_\ell = t)$

The least $n \in \mathbb{Z}^+$ such that every ℓ -labeling of K_n contains a monochromatic K_t .

For
$$r(t)\coloneqq r(t;2),$$

[Erdös] $(1+o(1))rac{t}{\sqrt{2}e}2^{t/2} < r(t) < 2^{2t}$ [Erdös-Szekeres]

Ramsey numbers

Further bounds:

where C is a constant dependent on $\ell \pmod{3}$.

Theorem (Conlon, Ferber, 2020) For $\ell \geq 3$, $r(t; \ell) \geq \left(2^{\frac{7\ell}{24}+C}\right)^{t-o(t)}$,

where C is a constant dependent on $\ell \pmod{3}$.

Conlon-Ferber Theorem

Theorem (Conlon, Ferber, 2020)

For $\ell \geq 3$, $r(t; \ell) \geq \left(2^{\frac{7\ell}{24}+C}\right)^{t-o(t)}$, where C is a constant dependent on $\ell \pmod{3}$.

Follows from [Lefmann] and the following main theorem.

Theorem (Main Theorem, Conlon, Ferber, 2020) For any prime p, $r(t; p+1) > 2^{t/2}p^{3t/8+o(t)}$.

Improvement: $\ell = 3$: from 1.732^{t} to 1.834^{t} $\ell = 4$: from 2^{t} to 2.135^{t}

Main Theorem

Theorem (Conlon, Ferber, 2020)

For any prime p, $r(t; p+1) > 2^{t/2} p^{3t/8 + o(t)}$.

We need to prove that there is a (p + 1)-labeling of K_n , $n = 2^{t/2}p^{3t/8+o(t)}$ that does not contain a monochromatic K_t . We will show that for a random (p + 1)-labeling,

 $\mathbb{P}(\exists \text{ monochromatic } K_t) < 1.$

This proves the theorem.

Let p be a prime and

 $V = \{v = (v_1, \dots, v_t) \in \mathbb{F}_p^t : v \cdot v = v_1^2 + \dots + v_t^2 = 0\} \subseteq \mathbb{F}_p^t.$ **Fact.** $\forall a \in \mathbb{F}_p, \exists b, c \in \mathbb{F}_p : a = b^2 + c^2$. *Proof.* Assume p > 2. Let $S_p = \{a^2 : a \in \mathbb{F}_p\}$. Then $|S_p| = (p+1)/2.$ **Lemma.** (*Cauchy-Davenport Theorem*) For any $A, B \subseteq \mathbb{F}_p, |A + B| \ge \min\{p, |A| + |B| - 1\}.$ Thus $|S_p + S_p| \ge p$. \Box So for any $v_1, \ldots, v_{t-2} \in \mathbb{F}_p$, there

exist
$$v_{t-1}, v_t \in \mathbb{F}_p$$
 such that $-\left(v_1^2 + \cdots + v_{t-2}^2\right) = v_{t-1}^2 + v_t^2$. Thus $p^{t-2} \leq |V| \leq p^t$.

We have $V = \{v = \in \mathbb{F}_p^t : v \cdot v = 0\}$ and $p^{t-2} \le |V| \le p^t$. We now label $E(K_V)$.

• If
$$u \cdot v = i \neq 0$$
, then set $\chi(uv) = i$.

▶ If $u \cdot v = 0$, then set $\chi(uv) \in \{p, p+1\}$ independently and uniformly at random.

Labels in [p-1]; easy. There is no monochromatic K_s with label $i \in [p-1]$, for any s > t. This follows by taking the vertex set $\{y_1, \ldots, y_s\}$ of K_s and observing that it is linearly independent.

Labels in $\{p, p+1\}$: Define $X \subseteq V$ to be a *potential clique* if |X| = t and $u \cdot v = 0$ for all $u, v \in X$. Let M_X be the matrix formed by taking vectors in X as rows of M_X . Then $M_X M_X^T = 0$. Let X be a potential clique with rank r

and suppose the first r rows of M_X are linearly independent. The number of such X is at most the number of $t \times t$ matrices M_X of rank r having first r rows linearly independent. The number of such matrices is

$$\left(\prod_{i=0}^{r-1} p^{t-i}\right) \cdot p^{(t-r)r} = p^{tr - \binom{r}{2} + tr - r^2} = p^{2tr - \frac{3r^2}{2} + \frac{r}{2}}$$

So the number of potential cliques N_t is at most

$$p^{2tr-rac{3r^2}{2}+rac{r}{2}} \leq p^{rac{5t^2}{8}+o(t^2)}, \quad ext{maximizing at } r=t/2.$$

Now for $n = 2^{t/2}p^{3t/8+o(t)}$, let $\alpha = n/2|V| = np^{-t+O(1)}$. Choose a random subset of V by picking each element of V independently with probability α . The expected number of monochromatic potential cliques is

$$\alpha^{t} 2^{1 - \binom{t}{2}} N_{t} \leq p^{-t^{2} + o(t^{2})} n^{t} 2^{-t^{2}/2 + o(t^{2})} p^{5t^{2}/8 + o(t^{2})}$$
$$= \left(2^{-t/2} p^{-3t/8 + o(t)} n \right)^{t} < 1/2.$$

So there is a choice of subset of size n such that there is no monochromatic potential clique.

References

- David Conlon, Asaf Ferber. Lower bounds for multicolor Ramsey numbers. https://arxiv.org/abs/2009.10458.
- Yuval Wigderson. An improved lower bound on multicolor Ramsey numbers. https://arxiv.org/abs/2009.12020.

Thank you!