Improved Lower Bounds on
 Multicolor Diagonal Ramsey Numbers

S. Venkitesh
IIT Bombay

April 23, 2021
E-Seminar on Graphs and Matrices

Ramsey numbers

Ramsey number $r\left(t_{1}, t_{2}, \ldots, t_{\ell} ; \ell\right)$
The least $n \in \mathbb{Z}^{+}$such that every ℓ-(edge) labeling of K_{n} contains a monochromatic $K_{t_{i}}$, for some $i \in[\ell]$.

Diagonal Ramsey number $r(t ; \ell)$
$\left(t_{1}=\cdots=t_{\ell}=t\right)$
The least $n \in \mathbb{Z}^{+}$such that every ℓ-labeling of K_{n} contains a monochromatic K_{t}.

For $r(t):=r(t ; 2)$,
[Erdös] $\quad(1+o(1)) \frac{t}{\sqrt{2} e} 2^{t / 2}<r(t)<2^{2 t} \quad$ [Erdös-Szekeres]

Ramsey numbers

Further bounds:

$-r(t ; \ell)<\ell^{\ell t}, \quad r(t ; 3)>3^{t / 2}$

- $r\left(t ; \ell_{1}+\ell_{2}\right) \geq\left(r\left(t ; \ell_{1}\right)-1\right)\left(r\left(t ; \ell_{2}\right)-1\right) \quad$ [Lefmann]
- For $\ell \geq 2$,

$$
r(t ; \ell) \geq\left(2^{\frac{79}{300}+C}\right)^{t+o(t)}
$$

where C is a constant dependent on $\ell(\bmod 3)$.
Theorem (Conlon, Ferber, 2020)
For $\ell \geq 3$,

$$
r(t ; \ell) \geq\left(2^{\frac{7 \ell}{4}+c}\right)^{t-o(t)}
$$

where C is a constant dependent on $\ell(\bmod 3)$.

Conlon-Ferber Theorem

Theorem (Conlon, Ferber, 2020)
For $\ell \geq 3, \quad r(t ; \ell) \geq\left(2^{\frac{7 \ell}{24}+C}\right)^{t-o(t)}$, where C is a constant dependent on $\ell(\bmod 3)$.

Follows from [Lefmann] and the following main theorem.

Theorem (Main Theorem, Conlon, Ferber, 2020)
For any prime $p, \quad r(t ; p+1)>2^{t / 2} p^{3 t / 8+o(t)}$.
Improvement: $\quad \ell=3$: from 1.732^{t} to 1.834^{t}

$$
\ell=4: \text { from } 2^{t} \text { to } 2.135^{t}
$$

Main Theorem

Theorem (Conlon, Ferber, 2020)
For any prime $p, \quad r(t ; p+1)>2^{t / 2} p^{3 t / 8+o(t)}$.
We need to prove that there is a $(p+1)$-labeling of $K_{n}, n=2^{t / 2} p^{3 t / 8+o(t)}$ that does not contain a monochromatic K_{t}. We will show that for a random ($p+1$)-labeling,

$$
\mathbb{P}\left(\exists \text { monochromatic } K_{t}\right)<1 .
$$

This proves the theorem.

Proof of Main Theorem

Let p be a prime and
$V=\left\{v=\left(v_{1}, \ldots, v_{t}\right) \in \mathbb{F}_{p}^{t}: v \cdot v=v_{1}^{2}+\cdots+v_{t}^{2}=0\right\} \subseteq \mathbb{F}_{p}^{t}$.
Fact. $\forall a \in \mathbb{F}_{p}, \exists b, c \in \mathbb{F}_{p}: a=b^{2}+c^{2}$. Proof.
Assume $p>2$. Let $S_{p}=\left\{a^{2}: a \in \mathbb{F}_{p}\right\}$. Then
$\left|S_{p}\right|=(p+1) / 2$.
Lemma. (Cauchy-Davenport Theorem) For any $A, B \subseteq \mathbb{F}_{p},|A+B| \geq \min \{p,|A|+|B|-1\}$.
Thus $\left|S_{p}+S_{p}\right| \geq p . \quad \square$ So for any $v_{1}, \ldots, v_{t-2} \in \mathbb{F}_{p}$, there
exist $v_{t-1}, v_{t} \in \mathbb{F}_{p}$ such that
$-\left(v_{1}^{2}+\cdots+v_{t-2}^{2}\right)=v_{t-1}^{2}+v_{t}^{2}$. Thus $p^{t-2} \leq|V| \leq p^{t}$.

Proof of Main Theorem

We have $V=\left\{v=\in \mathbb{F}_{p}^{t}: v \cdot v=0\right\}$ and $p^{t-2} \leq|V| \leq p^{t}$. We now label $E\left(K_{V}\right)$.

- If $u \cdot v=i \neq 0$, then set $\chi(u v)=i$.
- If $u \cdot v=0$, then set $\chi(u v) \in\{p, p+1\}$ independently and uniformly at random.

Labels in $[p-1]$; easy. There is no monochromatic K_{s} with label $i \in[p-1]$, for any $s>t$. This follows by taking the vertex set $\left\{y_{1}, \ldots, y_{s}\right\}$ of K_{s} and observing that it is linearly independent.

Proof of Main Theorem

Labels in $\{p, p+1\}$: Define $X \subseteq V$ to be a potential clique if $|X|=t$ and $u \cdot v=0$ for all $u, v \in X$. Let M_{X} be the matrix formed by taking vectors in X as rows of M_{X}. Then $M_{X} M_{X}^{T}=0$. Let X be a potential clique with rank r and suppose the first r rows of M_{X} are linearly independent. The number of such X is at most the number of $t \times t$ matrices M_{X} of rank r having first r rows linearly independent. The number of such matrices is

$$
\left(\prod_{i=0}^{r-1} p^{t-i}\right) \cdot p^{(t-r) r}=p^{t r-\binom{r}{2}+t r-r^{2}}=p^{2 t r-\frac{3 r^{2}}{2}+\frac{r}{2}} .
$$

Proof of Main Theorem

So the number of potential cliques N_{t} is at most

$$
p^{2 t r-\frac{r^{2}}{2}+\frac{r}{2}} \leq p^{\frac{5 t^{2}}{8}+o\left(t^{2}\right)}, \quad \text { maximizing at } r=t / 2 .
$$

Now for $n=2^{t / 2} p^{3 t / 8+o(t)}$, let $\alpha=n / 2|V|=n p^{-t+O(1)}$. Choose a random subset of V by picking each element of V independently with probability α. The expected number of monochromatic potential cliques is

$$
\begin{aligned}
\alpha^{t} 2^{1-\left(\frac{t}{2}\right)} N_{t} & \leq p^{-t^{2}+o\left(t^{2}\right)} n^{t} 2^{-t^{2} / 2+o\left(t^{2}\right)} p^{5 t^{2} / 8+o\left(t^{2}\right)} \\
& =\left(2^{-t / 2} p^{-3 t / 8+o(t)} n\right)^{t}<1 / 2 .
\end{aligned}
$$

So there is a choice of subset of size n such that there is no monochromatic potential clique.

References

- David Conlon, Asaf Ferber. Lower bounds for multicolor Ramsey numbers. https://arxiv.org/abs/2009.10458.
- Yuval Wigderson. An improved lower bound on multicolor Ramsey numbers. https://arxiv.org/abs/2009.12020.

Thank you!

